Control of photorespiratory glycolate metabolism in an oxygen-resistant mutant of Chlorella sorokiniana.

نویسندگان

  • R F Beudeker
  • F R Tabita
چکیده

Under a gas atmosphere of 99% O2/1% CO2, wild-type cells of Chlorella sorokiniana excreted 12% of their dry weight as glycolate during photolithotrophic growth, whereas mutant cells excreted glycolate at only 3% of the cellular dry weight. The observed difference in glycolate excretion by the two cell types appears to be due to a different capacity for the metabolism of glycolate, rather than to a different glycolate formation rate. This was concluded from experiments in which the metabolism of glycolate via the glycine-serine pathway was inhibited by the addition of isoniazid. Under such conditions, glycolate excretion rates for both cell types were identical. The mutant appeared to have significantly higher specific activities of glycine decarboxylase, serine hydroxymethyltransferase, serine-glyoxylate aminotransferase, glycerate kinase, and phosphoglycolate phosphatase than did the wild type. The specific activities of D-ribulose-1,5-bisphosphate carboxylase/oxygenase, glycolate dehydrogenase, glyoxylate-aminotransferase, and hydroxypyruvate reductase were the same for wild-type and mutant cells. The internal pool sizes of ammonia and amino acids increased in wild-type cells grown under high-oxygen concentrations but were hardly affected by high oxygen tensions in the mutant cells. Our results indicate that, under the growth conditions applied, the decarboxylation of glycine becomes the rate-limiting step of the glycine-serine pathway for the wild-type cells of C. sorokiniana.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycolate metabolism is under nitrogen control in chlorella.

The utilization of nitrate and ammonia as nitrogen sources had different effects on the metabolism of glycolate in Cholorella sorokiniana. During photolithotrophic growth with nitrate as nitrogen source, glycolate was metabolized via the glycine-serine pathway. Ammonia, produced as a result of glycolate metabolism, was reassimilated by glutamine synthetase. Two isoforms of this enzyme were pres...

متن کامل

Control of Free Methionine Production in Wild Type and Ethionine-resistant Mutants of Chlorella sorokiniana.

Mutants of Chlorella sorokiniana selected for resistance to the methionine analogue ethionine took up ethionine at the same rate as did the wild type strain. Cells of two ethionine-resistant mutants produced severalfold higher levels of free methionine and cysteine than did wild type cells.Exogenous methionine had no apparent effect on free methionine production in a mutant that produces excess...

متن کامل

Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions.

This study measured the relations between tryptophan production, the phytohormone indole-3-acetic acid (IAA) and the metabolism and accumulation of starch during synthetic mutualism between the microalgae Chlorella sorokiniana and the microalgae growth-promoting bacteria Azospirillum brasilense, created by co-immobilization in alginate beads. Experiments used two wild-type A. brasilense strains...

متن کامل

Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions

Photorespiration is essential for all organisms performing oxygenic photosynthesis. The evolution of photorespiratory metabolism began among cyanobacteria and led to a highly compartmented pathway in plants. A molecular understanding of photorespiration in eukaryotic algae, such as glaucophytes, rhodophytes, and chlorophytes, is essential to unravel the evolution of this pathway. However, mecha...

متن کامل

Physiology and Ultrastructure of an Oxygen-resistant Chlorella Mutant under Heterotrophic Conditions.

The oxygen-resistant strain of Chlorella sorokiniana (Shihira and Krauss), distinguished by its ability to grow autotrophically under high partial pressures of oxygen, was studied and partially characterized in heterotrophic culture. Ultrastructural analysis of glucose-grown oxygen-resistant strain and wild type cells reveals that osmiophilic deposits (possibly polyphosphate) are present only i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 155 2  شماره 

صفحات  -

تاریخ انتشار 1983